16 resultados para Phaseolus vulgaris

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our objective was to determine the coordination of transcript and/or protein abundances of stromal enzymes during leaf senescence. First trifolioliate leaves of Phaseolus vulgaris L. plants were sampled beginning at the time of full leaf expansion; at this same time, half of the plants were switched to a nutrient solution lacking N. Total RNA and soluble protein abundances decreased after full leaf expansion whereas chlorophyll abundance remained constant; N stress enhanced the decline in these traits. Abundances of ribulose-1,5-bisposphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39), Rubisco activase and phosphoribulokinase (Ru5P kinase; EC 2.7.1.19) decreased after full leaf expansion in a coordinated manner for both treatments. In contrast, adenosine diphosphate glucose (ADPGlc) pyrophosphorylase (EC 2.7.7.27) abundance was relatively constant during natural senescence but did decline similar to the other enzymes under N stress. Northern analyses indicated that transcript abundances for all enzymes declined markedly on a fresh-weight basis just after full leaf expansion. This rapid decline was particularly strong for the Rubisco small subunit (rbcS) transcript. The decline was enhanced by N stress for rbcS and Rubisco activase (rca), but not for Ru5P kinase (prk) and ADPGlc pyrophosphorylase (agp). Transcripts of the Clp protease subunits clpC and clpP declined in abundance just after full leaf expansion, similar to the other mRNA species. When Northern blots were analyzed using equal RNA loads, rbcS transcripts still declined markedly just after full leaf expansion whereas rca and clpC transcripts increased over time. The results indicated that senescence was initiated near the time of full leaf expansion, was accelerated by N stress, and was characterized by large decline in transcripts of stromal enzymes. The decreased mRNA abundances were in general associated with steadily declining stromal protein abundances, with ADPGlc pyrophosphorylase being the notable exception. Transcript analyses for the Clp subunits supported a recent report (Shanklin et al., 1995, Plant Cell 7: 1713--1722) indicating that the Clp protease subunits were constitutive throughout development and suggested that ClpC and ClpP do not function as a senescence-specific proteolytic system in Phaseolus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We showed that when CA3 pyramidal neurons in the caudal 80% of the dorsal hippocampus had almost disappeared completely, the efferent pathway of CA3 was rarely detectable. We used the mouse pilocarpine model of temporal lobe epilepsy (TLE), and injected iontophoretically the anterograde tracer phaseolus vulgaris leucoagglutinin (PHA-L) into gliotic CA3, medial septum and the nucleus of diagonal band of Broca, median raphe, and lateral supramammillary nuclei, or the retrograde tracer cholera toxin B subunit (CTB) into gliotic CA3 area of hippocampus. In the afferent pathway, the number of neurons projecting to CA3 from medial septum and the nucleus of diagonal band of Broca, median raphe, and lateral supramammillary nuclei increased significantly. In the hippocampus, where CA3 pyramidal neurons were partially lost, calbindin, calretinin, parvalbumin immunopositive back-projection neurons from CA1-CA3 area were observed. Sprouting of Schaffer collaterals with increased number of large boutons in both sides of CA1 area, particularly in the stratum pyramidale, was found. When CA3 pyramidal neurons in caudal 80% of the dorsal hippocampus have almost disappeared completely, surviving CA3 neurons in the rostral 20% of the dorsal hippocampus may play an important role in transmitting hyperactivity of granule cells to surviving CA1 neurons or to dorsal part of the lateral septum. We concluded that reorganization of CA3 area with its downstream or upstream nuclei may be involved in the occurrence of epilepsy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pemphigus vulgaris (PV) is a severe autoimmune bullous skin disease and is primarily associated with IgG against desmoglein 3 (dsg3), a desmosomal adhesion protein. In light of the recent association of autoreactive T helper (Th) 2 cells with active PV, the present study sought to relate the occurrence of Th2-regulated dsg3-specific autoantibody subtypes, i.e. IgE and IgG4, in 93 well-characterized PV patients. Patients with acute onset PV (n=37) showed the highest concentrations of serum IgE and IgG4 autoantibodies, which were significantly lower in PV patients in remission (n=14). Furthermore, there was a strong correlation between dsg3-reactive IgE and IgG4 in acute onset, but not in chronic active (n=42) or remittent patients. Additionally, intercellular IgE deposits were detected in the epidermis of acute onset PV. Thus, dsg3-specific IgE and IgG4 autoantibodies are related to acute onset disease which provides additional support to the concept that PV is a Th2-driven autoimmune disorder.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The autoimmune disease pemphigus vulgaris (PV) manifests as loss of keratinocyte cohesion triggered by autoantibody binding to desmoglein (Dsg)3, an intercellular adhesion molecule of mucous membranes, epidermis, and epidermal stem cells. Here we describe a so far unknown signaling cascade activated by PV antibodies. It extends from a transient enhanced turn over of cell surface-exposed, nonkeratin-anchored Dsg3 and associated plakoglobin (PG), through to depletion of nuclear PG, and as one of the consequences, abrogation of PG-mediated c-Myc suppression. In PV patients (6/6), this results in pathogenic c-Myc overexpression in all targeted tissues, including the stem cell compartments. In summary, these results show that PV antibodies act via PG to abolish the c-Myc suppression required for both maintenance of epidermal stem cells in their niche and controlled differentiation along the epidermal lineage. Besides a completely novel insight into PV pathogenesis, these data identify PG as a potent modulator of epithelial homeostasis via its role as a key suppressor of c-Myc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We recently reported that the pathogenesis of pemphigus vulgaris (PV), an autoimmune blistering skin disorder, is driven by the accumulation of c-Myc secondary to abrogation of plakoglobin (PG)-mediated transcriptional c-Myc suppression. PG knock-out mouse keratinocytes express high levels of c-Myc and resemble PVIgG-treated wild-type keratinocytes in most respects. However, they fail to accumulate nuclear c-Myc and loose intercellular adhesion in response to PVIgG-treatment like wild-type keratinocytes. This suggested that PG is also required for propagation of the PVIgG-induced events between augmented c-Myc expression and acantholysis. Here, we addressed this possibility by comparing PVIgG-induced changes in the desmosomal organization between wild-type and PG knock-out keratinocytes. We found that either bivalent PVIgG or monovalent PV-Fab (known to trigger blister formation in vivo) disrupt the linear organization of all major desmosomal components along cell borders in wild-type keratinocytes, simultaneously with a reduction in intercellular adhesive strength. In contrast, PV-Fab failed to affect PG knock-out keratinocytes while PVIgG cross-linked their desmosomal cadherins without significantly affecting desmoplakin. These results identify PG as a principle effector of the PVIgG-induced signals downstream of c-Myc that disrupt the desmosomal plaque at the plasma membrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pathomechanism in human pemphigus vulgaris (PV) has recently been described to rely on generalized c-Myc upregulation in skin and oral mucosa followed by hyperproliferation. Here we assessed whether dogs suffering from PV present the same pathological changes as described for human patients with PV. Using immunofluorescence analysis on patients' biopsy samples, we observed marked nuclear c-Myc accumulation in all layers of the epidermis and oral mucosa in all (3/3) dogs analysed. In addition, c-Myc upregulation was accompanied by an increased number of proliferating Ki67-positive cells. These molecular changes were further paralleled by deregulated expression of wound healing and terminal differentiation markers as observed in human PV. Together these findings suggest a common pathomechanism for both species which is of particular relevance in the light of the recently discussed novel therapeutic strategies aiming at targeting PV antibody-induced signalling cascades.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disruption of desmosomal cadherin adhesion leads to the activation of intracellular signaling pathways that are responsible for blister formation in pemphigus vulgaris (PV). Recent studies corroborate the implication of the p38 mitogen-activated protein kinase in PV blistering via its downstream effector mitogen-activated protein kinase activated protein kinase 2. These insights highlight the key role of cadherins in tissue homeostasis and are expected to change pemphigus management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel insights into intra-cellular signalling involved in pemphigus vulgaris (PV), an autoimmune blistering disease of skin and mucous membranes, are now revealing new therapeutic approaches such as the chemical inhibition of PV-associated signals in conjunction with standard immunosuppressive therapy. However, extensive inhibition of signalling molecules that are required for normal tissue function and integrity may hamper this approach. Using a neonatal PV mouse model, we demonstrate that epidermal blistering can be prevented in a dose-dependent manner by clinically approved EGFR inhibitors erlotinib and lapatinib, but only up to approximately 50% of normal EGFR activity. At lower EGFR activity, blisters again aggravated and were highly exacerbated in mice with a conditional deletion of EGFR. Statistical analysis of the relation between EGFR activity and the extent of skin blistering revealed the best fit with a non-linear, V-shaped curve with a median break point at 52% EGFR activity (P = 0.0005). Moreover, lapatinib (a dual EGFR/ErbB2 inhibitor) but not erlotinib significantly reduced blistering in the oral cavity, suggesting that signalling mechanisms differ between PV predilection sites. Our results demonstrate that future clinical trials evaluating EGFR/ErbB2 inhibitors in PV patients must select treatment doses that retain a specific level of signal molecule activity. These findings may also be of relevance for cancer patients treated with EGFR inhibitors, for whom skin lesions due to extensive EGFR inhibition represent a major threat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The majority of pemphigus vulgaris (PV) patients suffer from a live-threatening loss of intercellular adhesion between keratinocytes (acantholysis). The disease is caused by auto-antibodies that bind to desmosomal cadherins desmoglein (Dsg) 3 or Dsg3 and Dsg1 in mucous membranes and skin. A currently unresolved controversy in PV is whether apoptosis is involved in the pathogenic process. The objective of this study was to perform preclinical studies to investigate apoptotic pathway activation in PV pathogenesis with the goal to assess its potential for clinical therapy. For this purpose, we investigated mouse and human skin keratinocyte cultures treated with PV antibodies (the experimental Dsg3 monospecific antibody AK23 or PV patients IgG), PV mouse models (passive transfer of AK23 or PVIgG into adult and neonatal mice) as well as PV patients' biopsies (n=6). A combination of TUNEL assay, analyses of membrane integrity, early apoptotic markers such as cleaved poly-ADP-ribose polymerase (PARP) and the collapse of actin cytoskeleton failed to provide evidence for apoptosis in PV pathogenesis. However, the in vitro and in vivo PV models, allowing to monitor progression of lesion formation, revealed an early, transient and low-level caspase-3 activation. Pharmacological inhibition confirmed the functional implication of caspase-3 in major events in PV such as shedding of Dsg3, keratin retraction, proliferation including c-Myc induction, p38MAPK activation and acantholysis. Together, these data identify low-level caspase-3 activation downstream of disrupted Dsg3 trans- or cis-adhesion as a major event in PV pathogenesis that is non-synonymous with apoptosis and represents, unlike apoptotic components, a promising target for clinical therapy. At a broader level, these results posit that an impairment of adhesive functions in concert with low-level, non-lethal caspase-3 activation can evoke profound cellular changes which may be of relevance for other diseases including cancer.